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Fluctuations in the divergence of nearby orbits are studied at a crisis point of 
chaos. A statistical-thermodynamic method for the description of the fluctua- 
tions is developed by using symbolic dynamics, which can explicitly write a rela- 
tion between a fluctuation and reference orbit. The thermodynamics (the free 
energy and entropy) is exactly analyzed on a nonhyperbolic attractor of maps 
conjugate to the map: u ~ u/a for 0 ~< u < a and u ~ (1 - u)/(1 - a) for a ~< u ~< 1. 
Te free energy has discontinuities in its slope. The entropy is directly calculated 
from the partition function. Then, it becomes clear that the collision of a chaotic 
attractor with a particular fixed point yields a singular local structure in the 
distribution of fluctuations. The existence of first-order phase transitions 
depends on the asymmetry of a map. It is shown that each of the coexisting 
states at the phase transition points is realized with the same probability in the 
thermodynamic limit. 

KEY WORDS: Fully developed chaos; local Lyapunov exponent; thermo- 
dynamics; exact solutions; first-order phase transitions; entropy; coexisting 
states. 

1. I N T R O D U C T I O N  

Recently, fluctuations in the divergence of nearby orbits have been exten- 
sively studied to describe the dynamical features of chaos. (l-H) It has been 
shown that at a bifurcation point, such as a crisis point and a saddle-node 
bifurcation point of intermittent chaos, the distribution of these fluctua- 
tions takes anomalous forms. In this paper, the fluctuations on attractors 
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of fully developed chaos (12) will be studied in the statistical-thermodynamic 
formalism, ('3) and anomalous behaviors of the fluctuations will be analyzed 
in detail. 

A local Lyapunov exponent A is defined as a divergence rate of 
infinitely neighboring orbits along a reference orbit for a finite time n. (14 16) 
A statistical-thermodynamic method (15-19) for the description of fluctua- 
tions of a local Lyapunov exponent has been introduced, using a partition 
function. Then, the anomalous behavior of the fluctuations can be charac- 
terized by nonanalyticity of the free energy in the thermodynamic limit 
n--* 00. (4-1~ The logistic map, f(x)= 4x(1-  x), gives the simplest example 
that the free energy having discontinuities in its slope can be solved 
exactly. (8"1s) There are other thermodynamics, such as generalized dimen- 
sions (17'2~ and generalized entropies, (21) for characterizing chaos. For the 
logistic map, a phase transition occurs in the thermodynamics of a scaling 
index, i.e., in the generalized dimensions. (15'22) Is there any relation between 
these phase transitions? (8' 16) The distribution of local Lyapunov exponents 
depends on that of initial values of the reference orbits. Usually, the 
probability measure of an initial value is given by a natural invariant 
measure. I introduce generalized thermodynamics of a local Lyapunov 
exponent, using weighted measures instead of the natural measure. Then, a 
relation between the phase transitions in the thermodynamics of a scaling 
index and of a local Lyapunov exponent becomes clear in the generalized 
thermodynamics. 

Large deviations of fluctuations of a local Lyapunov exponent can be 
described by the entropy. (23'24) Anomalous behavior of the fluctuations 
may be characterized by linear slopes of the entropy. The linear slopes 
imply that the free energy has discontinuities in its slope, i.e., the 
occurrence of first-order phase transitions. Usually, the entropy is given as 
the Legendre transform of the free energy. (ls'19) Discontinuities in the slope 
of the free energy then lead to linear slopes of the entropy, because the 
Legendre transform is convex. One must notice that the entropy may be 
different from the Legendre transform when the free energy has discon- 
tinuities. (16) The distribution of fluctuations can be directly obtained from 
experiments, while the free energy is obtained indirectly. (4 6,2s) The dis- 
tribution of the fluctuations, i.e., the entropy, must be obtained from direct 
calculations, not from the Legendre transformation of the free energy, 
when the free energy has the discontinuities. In this paper, the entropy will 
be directly calculated from the partition function. The calculations are 
performed by using symbolic dynamics. (16'26) Since the symbolic dynamics 
describes the relation of a local Lyapunov exponent to a reference orbit 
explicitly, it is possible to get detailed information about typical reference 
orbits for each value of a local Lyapunov exponent. Then, the linear slopes 
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of the entropy for fully developed chaos can be explained in relation to the 
typical reference orbits. 

For the logistic m a p f ( x ) =  4x(1 - x ) ,  the entropy of a local Lyapunov 
exponent (w.r.t. the natural measure) is (8'15) 

f A - l n  2 for A~<ln2 

s(A)=tln~A- for for ln2<A~<21n2A~>21n2 
(1.1) 

Since the logistic map is conjugate to the symmetrical tent map g(x)= 
1 -  [2x-1],  almost all of the fluctuations are degenerate with In 2. The 
fixed point x = 0  has A = 2 I n  2. Bohr and Jensen (8) studied the fully 
developed chaos of asymmetrical maps, discussing effects of the asymmetric 
perturbation to the singular local structures of fluctuations given by (1.1). 
They found that a large perturbation of the asymmetry may lead to 
qualitative changes of the singular local structures, while a small perturba- 
tion resolves the degeneracy of In 2 but gives no qualitative change. Their 
work was done in poor numerical calculations, and a uniform measure not 
equal to the natural measure was used. In this paper, the influence of an 
asymmetrical perturbation on the thermodynamics of a local Lyapunov 
exponent will be analytically investigated by using maps conjugate to an 
asymmetrical tent map. 

Section 2 gives maps conjugate to an asymmetrical tent map and con- 
structs symbolic dynamics by using a dynamical partition. The slope 2o of 
the asymmetrical tent map at the fixed point x = 0 measures the degree of 
asymmetry for the conjugating maps. In Section 3, the free energy of a local 
Lyapunov exponent is calculated and shows qualitatively different non- 
analytic behaviors dependent on ;to. Using weighted measures for an initial 
value of a reference orbit, the free energy is formulated in a generalized 
form. A relation between the thermodynamics of a scaling index and of a 
local Lyapunov exponent, especially the occurrence of first-order phase 
transitions, becomes clear. In Section 4, the entropy is directly calculated 
from the partition function. Typical reference orbits are given for each 
value of a local Lyapunov exponent. Linear slopes of the entropy are 
explained in intuitive discussions. Section 5 discusses probabilities of 
coexisting states at a first-order phase transition point. I show that each of 
the coexisting states is realized with the same probability in the thermo- 
dynamic limit. Section 5 gives summary also. Details of the calculations are 
performed in appendices. 
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2. M A P S  

Let us consider a map of the unit interval I =  [0, 1] to itself: 

, , [)yoU for O<.u<a (2.1) 
gtu)=~21(1-u  ) for a<~u~l 

where )~o = 1/a and 21 = 1/(1 - a ) .  An attractor of g is the entire interval L 
By using g, the interval I is partitioned into small intervals labeled by 
binary strings: 

Ju(ala2." an) =- Ju(0.1) n g-l(J,(0.2... 0.~)) (2.2a) 

for n = 2, 3, 4,..., and 

j~(al)=f[O,a), for a l = 0  
(2.2b) 

( [ a ,  1] for o- 1=1 

where 0.j e {0, 1 }. The length of the interval Ju(0.1 a2... an) is 

1J~(0.10.2"'" 0..)1 = l~I [1/2(0.j)] (2.3) 
j ~ l  

where 2(0.)-= ( 1 -  0.)).o + 0.21. The natural invariant measure for g is given 
by the length of an interval: 

P g ( 0 . 1 a 2  " '"  0 . n )  = ] J u ( 0 . 1 a 2  " '"  0 . n ) ]  (2.4) 

u(a10.2".'a,) denotes the minimum point in the interval J,(a10.2".an). 
Then, we have 

/2(0.10"2 " " " O ' n )  --~- min{u I u ~ J~(0.1 a2" "o-n)} 

= ]Ju(0.1 ""aj-16j)l 0 a k (2.5) 
j = l  1 

where # - 1 - a and the integer function 0 is 

O(i) = {01 for /=even  
for i =  odd 

Let us now consider a map conjugate to the asymmetrical tent map 
(Fig. 1), 

f=qoogoqo 1 (2.6) 
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Fig. 1. An asymmetrical tent map g(u) and conjugating map f (x) .  The conjugacy ~s 
x = ~o(u) = u~/[u 2 + (1 - u)2]. 

The conjugacy q~ is assumed to be a smooth and strictly monotone 
increasing function on the open interval (0, I) with ~0(0)= 0 and ~p(1)= 1. 
We consider the dynamical partition consisting of the 2" intervals labeled 
by the binary strings, 

J ( f l O 2  ""O'n) = { x l x  = (P(u), t't C Ju(~ G2 " ' ' f i n ) }  (2.7) 

From the mean value theorem, the length of J ( f ~ a 2 . . . f , )  can be written 
as 

IJ(Ol f2  "'" fn)] = IJu(~710"2"' ' fn)[  q~'(fi(O'l 0"2 ' ' ' f i n ) )  (2.8a)  

where ~o' is the derivative of ~o and the constant z/satisfies the inequality 

u ( f ~ a z . . . f , ) < f i ( ~ r l f 2 . . . f , ) < u ( a ~ f 2 . . . f , ) + ] J , ( f l a 2 . . . f , )  ] (2.8b) 

The probability on J(f~ o'2--. 0",) is 

Pf(~71 i f2" '"  ~7.) = e g ( f 1 6 2  " " an) (2.9) 

If ~0'(u) is positive and finite on I, then IJ(cr~a2.-. cr,)l and [Ju(f l  a 2 . . .  a,)l 
show the same asymptotic behaviors in the limit n ~ ~ .  Hence, the ther- 
modynamics of a local Lyapunov exponent, given in the next section, is 
invariant under the conjugation of this type. We consider the case that ~o 
has the same singularity at u = 0 and u = l: 

~BlU z for 0 ~ u ~ l  (2.10) 
c P ( u ) " ~ ( 1 - B 2 ( 1 - u ) ~  for O ~ < l - u ~ l  
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where z > 0  and z # l .  Here B 1 and B 2 a r e  positive constants of 0(1). 
Therefore, the conjugating function f has a maximum of the order z at 
x =c=_q)(a), 

f(x)~_ {ll-B2[a(o'(a)] ) ( c - x )  ~ 
- B z [ ( 1 - a )  q~ (a)] -~ ( x - c )  ~ 

Note that the slope o f f  at x = 0 is 2~. 

for O ~ c - x ~ l  
(2.11) 

for O < ~ x - c ~ l  

3. FREE ENERGY A N D  FIRST-ORDER PHASE T R A N S I T I O N S  

A local Lyapunov exponent of a reference orbit {Xo, xl=f(xo),..., 
xn =f" (x0)}  is given by 

1 2 
A(xo;n)=-- ~ l n l f ' ( x j  ~)[ (3.1) 

/ ' / j - -  1 

For Uo e Ju(o-xf2 ""  f , ) ,  we have 

1 2 
A(uo;n)=-  ~ In 2(fj) (3.2) 

/'~ j =  1 

However, for different Xo and X'oEJ( f l f z '" fn)  o n  the attractor o f f ,  
A(xo; n) generally has a different value from A(x'o; n). Let us consider an 
expansion rate of a small interval, instead of (3.1)(15'16): 

A ( o  1 f 2  - -. f u ;  n) ---- (l/n) In{ IJ(f, + l"" GN)I/IJ(fl O'2""" fiN)] } (3.3) 

The local Lyapunov exponent (3.1) is obtained from (3.3) in the limit 
N + m .  

The statistical thermodynamics of A is introduced with the Gibbs 
ensemble 

p ( a l f 2  ' "  "O'N; q, t; n) 

~[Py( f l fa . . . fN)]qexp{- -n t .71( f l f2 . . . fN;n)} /~u(q , t ;n)  (3.4) 

The partition function SN(q, t; n) is given by 

~N(q, t; n) = E [Pf( f l f2  ... fu)3 q exp{ - -n tA ( f l a2 . " fu ;  n)} (3.5) 
O-iO-2---O- N 

where the summation is taken o v e r  2 N configurations of a binary string. On 
the assumption of convergence in the limit n --* oo with N/n = r fixed, the 
free energy is defined by 

1 
G q, t ; - - =  r -= - lim In F--~N(q, t; n) (3.6) 

n n ~ o o n  
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G(q, t; r) agrees with the free energy of a scaling index and size index of a 
box at r = 1, (~6) with that  of  Bohr  and Jensen at q = 0 and r = 1, (8) and with 
that  of a local L y a p u n o v  exponent  at q = 1 and r = oo. Fo r  the asymmetr i -  
cal tent map,  it follows that  

G(q, t; r) = - I n  A(q  + t) - (r - 1) In A(q)  (3.7a) 

where 

A ( q ) ~ ( l l 2 o ) q + ( 1 / 2 l )  q (3.7b) 

Note  that  (3.7) is analytic for q and t. 
Fo r  the conjugat ing function, the par t i t ion function (3.5) can be 

written, inserting (2.8a) into (3.3), (2.4) into (2.9), and using (2.3), as 

~ q~'(/~(O" 1 0"2_'_" �9 O'N)) ~ t 
z,~(q,t;.)= Z L~o'(,~(,~.+l-~-~J 

O" 1 G 2 �9 , . O-  N 

X ~I ~ 1  ~q+ H (3.8) 

If 0 < q) ' (u )<  + ~  for all u e L then the free energy for f becomes (3.7). In 
the case (2.10), it turns out f rom Appendix  A that  

[A(q  + t ) ]  " -1  - (1/)~o) (q+zGn- 1) 
~"N(q, t; rt) 

A(q  + t ) -  (1/2o) q+zt 

[ A(  q) ] U - , -  ; _ (1/J~o)(q + t-- zt)(u-- , -- l) 
• (3.9) 

A ( q ) -  (1/2o) q+ t -z ,  

for sufficiently large N and n. At r = 1, the free energy is 

G(q, t; r =  1 ) =  ~ c - l n  A(q + t) 
I.(q + zt)  In 20 

if - l n A ( q + t ) < ( q + z t ) l n 2 0  
( 3 . 1 o )  

if - l n A ( q + t ) > ( q + z t ) l n 2  0 

Note  that  a solution of the equat ion  

G(q, t = - ~ ( q ) ;  r = 1) = 0 

gives the free energy of a scaling index Os'16) {:z 
~(q) = - 1 

for q > ~ z / ( z - 1 )  if z > l  

and for  q < z / ( z - 1 )  if 0 < z < l  

for q < z / ( z - 1 )  if z > l  

a n d f o r  q > ~ z / ( z - 1 )  if 0 < z < l  

( 3 . 1 1 )  
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For r > 1, the free energy is given by 

G(q, t; r> 1)=min{GA, GB, Gc} (3.12) 

where GA, Ge, and Gc are the free energies in the phases A, B, and C, 
respectively: 

G A ( q , t ; r > l )  = - - l n A ( q + t ) + ( r - 1 ) ( q + t - z t ) l n 2 o  (3.13a) 

GB(q, t; r > 1) _~ --In A(q + t) - (r - 1) in A(q) (3.13b) 

Gc(q, t; r > 1) - (q + zt) In 20 - ( r -  1) In A(q) (3.13c) 

The singularity of the derivative o f f  at x = c, i.e., I f ' (x)[  = 0  if z > 1 and 
= +oe if 0 < z <  1 in the limit x ~  c, brings out the phase A. The free 
energy GB coincides with (3.7), so that the phase B is called the hyperbolic 
phase. The phase C is brought out by the singularity of the probability 
measure at x = 0, called the fixed point phase. Thus, the free energy (3.12) 
has nonanalytic points. 

We now study the phase diagram in the (20, t, q) plane. The boundary 
between the phases A and B is given by 

2(0 z -  1)t ~- I qL (20/21)q (3.14) 

A solution of (3.14), t = t(q, 20), is positive if z > 1 and negative if 0 < z < 1. 
The boundary between the phases B and C is given by 

( z -  1)t in 2o + ln[1 + (20/21) q+t ] = 0  (3.15) 

For z > 1 and q = 1, we get the following: 

1. If (3.15) has real solutions, they are negative. 

2. Equation (3.15) has a unique real solution for 2o~> 2 , ,  two real 
solutions for 2 ,  > 20 ~> 2c, and no real solution for 2c > 20 > 1. At 
20 = 2c, the solutions become degenerate. [The definitions of 2 ,  
and 2~ are given in Appendix B, where (3.15) is analyzed in 
detail.] 

Figure 2 displays the phase diagrams on the plane (20, t, q = 1) for 
z > 1 and for 0 < z < 1, respectively. W h e n f i s  conjugate to the symmetrical 
tent map, i.e., 20 = 21 = 2, GA and G B are linear functions of q and t. As t 
changes in the case z >  1, G(q= 1, t; r >  1) shows different types of phase 
changes, depending on 20: There are two phase transitions for 2o>_-2, 
(along the line SS' in Fig. 2a), three phase transitions for 4,  > 2 o > 2  c 
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(along the line RR'), and only one phase transition for 2c > 20 > 1 (along 
the line QQ'). (See Fig. 3 also.) Bohr and Jensen have numerically obtained 
similar results for the fully developed map f(x)=Ax(1-x)(l+~,x)/8) 
Their aim is to study G(q = 0, t; r = l), which does not have the phase A. 
However. they observed the phase transition between the phases A and B 
for a small value of the asymmetry 7. This discrepancy may come from the 
fact that they actually calculated the maximum eigenvalue and its eigen- 
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Phase diagram on the plane (20, t, q = 1 ), for (a) z = 4, (b) z = 2, and (c) z = 1/2. The 
phase boundary  of A and B is given by the line t =  1/(z-1). 
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vector  of  the scaling function exp[---A(o-lo-2..-ffN;n----~)],(26) which is 
different f rom G(q = 0, t; r = 1). Figure 4 gives G(q, t; r = 1) as a function of 
q and t for ,t., > 2o > 2c as well as the free energy of a scaling index. The 
phase d iag ram at q = 0 is quali tat ively different f rom that  at q = 1. One can 
also find there a relat ion between the phase transit ions in bo th  the ther- 
m o d y n a m i c s  of a scaling index and of a local L y a p u n o v  exponent .  The 
phase  transit ions,  occurr ing on the changes of t with q fixed, are of the first 

G 

- 5  
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Fig. 3, 

A 
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o , / ( , . t )  

G 

- 5  

/'/" B 

- 5 o ~/(~-~) 
t. 

(a) (b) 

0 

G 

-5  

- 5  o ~/(~-~) 
t 

(c) 
Free energy G(q ~ 1, t; r = oe) for 2 o > 2 . ,  )~, > 20 > 2c, and  2c > 2o > 1. Pa rame te r  

values are z = 4  and  J~o= (a) 1.45, (b) 1.33, and  (c) 1.2. 
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q : O  
q 1 

Fig. 4. Free energy G(q, t; r = 1). Parameter  values are z = 4  and 20 = 1.3, which satisfies 
2 ,  > 2o > 2c(q = 1). The free energy of Bohr  and Jensen is given by the heavy line q = 0. The 
heavy line q = 1 coincides with the free energy of a local Lyapunov  exponent  for t < 1/(z - 1 ). 
The dashed line depicts G(q, t; r = 1 ) =  0, which gives t = - r ( q ) .  

order, except of a particular q = qc(2o). Note that a finite-size scaling law 
for these first-order phase transitions holds in the normal f o r m .  (16'27) The 
scaling exponent ( =  1 is different from Bohr and Jensen's numerical 
results.(8) 

4. ENTROPY FUNCTION AND ITS LINEAR SLOPES 

We study large deviations of the fluctuations of a local Lyapunov 
exponent. (4) Assume that the probability of an initial value of a reference 
orbit on the interval J(alCr2"" ~r~v) is given by 

E P f ( O l  o-2 . . .  ~ N ) ] q / ~ , N ( q ,  t = O; 1l) (4.l) 

which coincides with the natural invariant measure at q =  1. Now, 
WN(fl; n, q)d_71 is the probability that ~(~r~a2 ...~rN;n) takes a value on 
the interval [4 , /~  + dA]. On the assumption of the existence of a limit, the 
entropy function o f / ]  is defined by 

s(A; q, r) - lim (l/n) In W N ( A ;  n, q) 
n ~ o o  

with N/m = r fixed (4.2) 

The partition function (3.5) can be written as 

~:v(q,t;n)~ZN(q,t=O;n) f d.71exp{nEs(.Tl;q,r)-tA]} (4.3) 
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for sufficiently large n. Therefore, we have 

AG - G(q, t; r) - G(q, t = 0; r) = min{ tA - s(A; q, r)} 
A 

Using Stirling approximations in (A.5) and replacing the summations with 
integrations, we get 

= (z - 1)(r/-  () In 20 + in 20 - ~ ln(2o/21) (4.4) 

exp{ns(A; q, r)} 

n 3 ~~ (~;q,r) d~ d~ exp{ - n F ( ~ ,  t/; A, q)} (4.5) (z In 20 

where 

F(r r/; ~, q) = (1 - ~ - r/) ln(1 - ~ - r/) - (1 - r/) ln(1 - q) 

+ ~ In ~ - q ~  ln(2o/21) 

+ {r / -  [-.~ - z  In 2o + ~ ln(,~o/21)]/(z- 1)ln )~o} 

x ln[1 + (2o/21) q] (4.6) 

and the region of integration, denoted by D, is dependent on A. For 
simplicity, we consider the case z >  1 and r---, oo. Figures 5-7 show 
D(71;q , r=  oo) and a minimum point Q of F(~, t/; A, q) on D for 
2 > 2 o > 2 , ,  for 2 , > 2 o > 2 c ,  and for ) - c>2o> l ,  respectively. As 
maximum value approximations can be used to the integral (4.5), the 
following results are obtained (Fig. 8). 

Fig. 5. 

1 

o 
0 ~. ~ 

1 

0 
o ~. ~'B 1 

1 

0 
0 (. ~B 1 

(a) (b) (c) 

A minimum point Q of F(d . , r l ;A ,q)  on D = D ( A ; q , r = o o )  when 2 , < 2 o < 2 ,  for 
(a) A ~< Aa, (b) Aa < A <<. Ab,  and (e) A b < A <. z In 2o. Here ~n denotes ~o(As). 
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(a) 

0 ~. ~B (c I 

(b) 

I 

0 
0 ~. ~8 (c 1 

(c) 

0 ~. ~ {cl 0 ~. ~ ~cl 

(d) (e) 

Fig. 6. A minimum point Q of F(~, t/; A, q) on D = D(A; q, r= oo) when 2c < 2 o < 2,, for 
(a)A~<Aa, (b) Aa<A <~Ab, (C) Ab <A <~zln 2o, (d)zln 2o<A <~Ac, and (e)Ac<A-..<ln2 ~. 
Here ~c denotes ~o(A~). 

If 2 o > 2 ,  and  2 o # 41, then 

(sh(Aa; q) + (A - Aa) t*(Aa;  q) 

]sh(A;q)  
s(A; q, r=  oo)= } sh(Ab; q) + ( A -  Ab) t*(Ab; q) 

L 

for A <~ A~ 

for Aa < A <~ Ab 

for Ab < A <<. z ln 2o 

for A > z l n 2 o  

(4.7a) 

Fig. 7. 

(a) (b) 

A minimum point Q of F(~,q;A,q) on D=D(A;q,r=ov) when 1<2o<2 c, for 
(a) A~<A~and(b)Aa<A~<ln2~. 
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i 

A 

(c) 

Fig. 8. Entropy function s(A; q = 1, r = ~ )  for 2 ,  < 2 o < 2, 2 c < 2o < 2 , ,  and 1 < 20 < 2~. The 
dashed line denotes the entropy function sh(A , q= 1) for the asymmetrical tent map. The 
straight lines are tangent to the curve sh(A, q = 1) at A = Aa, A = Ab, and A = Ac, respectively. 
The term coming from the fixed point x = 0 is denoted by F. Parameter values are z = 2 and 
20 = (a) 1.7, (b) 1,59, and (c) 1.55. 
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If 2 ,  > 2o > 2c, then 

s(A; q, r = oo ) 

t 
'sh(Ao; q)+ (A - A a )  t*(A~; q) 

sh(A; q) 

= sh(Ao;q)+(A--Ab)t*(Ab;q)  

sh(Ac; q) + (A - Ao) t*(Ac; q) 
~ - -  0 0  

If 2o > 20 > 1, then 

fsh(A~; q) 

s (A;q 'r=~176 

for A ~<Aa 

for A~<A<.AborAc<A<<.ln21 

for Ab<A<<.zln2o 

for z ln 2o < A <~ Ac 

for A > l n  21 

(4.7b) 

+ ( A - A a )  t*(A~;q) for A ~<Aa 

for Aa<A~<ln21 

for A > l n  21 

(4.7c) 

sh(A; q) is the entropy function for the asymmetrical tent map, given by 

sh(A; q) = [(A -- In 20) In ]A -- In 2oi - (A - In 21) In IA - In 2j I ]/ln(2o/21) 

+ In Iln(2o/21)I - In A(q) - qA (4.8) 

and t*(A; q) is 

t*(A; q) = --q + [ln(2o/21) ] -1 In I(A - In 2o)/(A - I n  21)1 (4.9) 

Details of the calculation are given in Appendix C. The definitions of Aa, 
Ab, and Ac are given in that appendix. [See Appendix C for ~,  and ~.0(A) 
also.] 

A minimum point Q of F(~, q; A, q) on D tells us the most probable 
among the reference orbits for which the local Lyapunov exponent is equal 
to A. Indeed, m = qn gives the time interval that a reference orbit with an 
initial value near the fixed point x = 0 (or visiting the neighborhood of 
x = 0  at time T =  1) stays on the interval J(0). The quantity ~ gives the 
frequency that a reference orbit visits on the interval J(1). When the last 
point of a reference orbit passes the neighborhood of x = 1, the distance 
between the last point and x =  1 is measured by i=~n, i.e., the time 
necessary for the orbit to pass through the interval J(0) in the subsequent 
times. For example, let us consider the case 2o > 2 , .  The minimum point 
Q is ( ~ , q ) = ( ~ , , 0 )  for A<.Aa, where 4,  is given by (C.2) and not 
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dependent on A. A typical orbit with the local Lyapunov exponent A has 
rn ,-~ O(1), ~ -- ~ , ,  and 

i --~ n [In 20 - A - ~, ln(20/2 ~) ]/(z - 1 ) In 2o 

The initial point is distant from x = 0  and x = l ,  the frequency of 
visiting on J(1) is ~ , ,  and the last point passes x "-~ 1 - 2 o  zi or 2o zi. The 
probability of such orbits is proportional to the probability of the i state, 
i.e., - [ 1 + ( 2 o / 2 1 )  q] i Therefore, s(A;q,r=oe)  for A ~ A a  becomes a 
straight line with the slope [ ( z -  1) In 20] -1 ln[1 + (2o/21)q]. (9~ For Aa< 
A<~A b, F(~,tl;A,q) on D is minimum at ~=(ln2o-A)/ln(21/2o) and 
q=0 .  For Ab<A<...zln2o, the minimum point Q is the intersection 
(~b, t/b) of the lines t /= 1 - ~/~s and ~ = 0. A corresponding orbit takes an 
initial value around x ~-20 z'bn or 1 - 2 0  z~n, the frequency of visiting on 
J(1) is ~b, and the last point of the orbit does not fall into the neighbor- 
hoods of x = 0 and x -- 1. 

In the fully developed chaos, a chaotic attractor touches the unstable 
fixed point x =  0. This contact brings out a singular behavior in the 
probability distribution of an initial value of a reference orbit. Assume that 
the probability behaves like w(x) dx oc x ~- 1 dx for small x. As Ao denotes 
a local Lyapunov exponent of the fixed point, the probability that an orbit 
starts from a point in the interval [e A0(j+I), e -n~ is given by pj oc 
exp( -aAoj ) .  The orbit stays on J(0) till T = j -  1, and then moves on J(1). 
I assume that the probability density of the local Lyapunov exponents 
which are determined by the reference orbits of the part from T = j  to 
T =  n - 1 takes the asymptotic form 

e x p { ( n - j )  s0(A'; q)} for n - j ~ >  1 (4.10) 

where so(A'; q) is the entropy of the chaotic attractor colliding with the 
fixed point, which does not include any singularity due to the fixed point; 
this corresponds to a Markov assumption and holds for the map (2.6) 
(see Appendix C). The probability that a local Lyapunov exponent takes 
a value on [A, A + dA ] can be written as 

dA 
j= l  

~-dA ~j~, d~v-----~ exp n - -c~Ao~+(1-3)  

(4.11) 
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where the normalization factor P0 may be a power function o f j  and 

~m={0 if A ~ A M 

( A - A ~ t ) / ( A o - A M )  if A M < A < ~ A  o 

on the assumption A M < A  o. For sufficiently large n, we can use a 
maximum value approximation to (4.11). Consider the function 

K(~; A ) - = - - c ~ A o ~ + ( 1 - ~ ) s o ( A l ? - - ~ ; q )  (4.12) 

K(~; A) takes the maximum value KM at ~ = ~* =-- ( A - A * ) / ( A o - A * ) ,  
where KM is a linear function of A: 

K M =  [ - e ( A - A * ) + ( A o - A ) s o ( A * ; q ) ] / ( A o - A * )  (4.13a) 

and A*, a constant independent of A, satisfies 

8s0(A*; q) -c~Ao-so(A*;q) 
(4.13b) 

~A* A o -  A*  

on the assumption of the differentiability of so(A'; q) at A' = A*. The condi- 
tion that K(~; A) takes the maximum value K~  on the interval of integra- 
tion is A*<<.A<~A o. Note that (4.13) is equal to the equation of the 
tangent line drawn from the point (Ao, - eAo)  to the curve s = so(A; q) on 
the As plane (cf. refs. 4 and 9). Hence, one can say that when a chaotic 
attractor C collides with a particular fixed point F, the entropy s = s(A; q) 
of C + F is given by the convex hull of the entropies of C and F, i.e., 
s =  so(A; q) and the point (A0, -~A0), respectively. (5'6~ 

5. D I S C U S S I O N  A N D  S U M M A R Y  

I have developed the statistical thermodynamics of a local Lyapunov 
exponent on the analogy of the statistical mechanics in thermal equi- 
librium. Results obtained from the statistical thermodynamics of a local 
Lyapunov exponent may give important information for understanding the 
statistical mechanics in thermal equilibrium. Let us consider the Landau 
free energy (4) 

~,(A, q, t; r = oo )=- A t -  s(A; q, r =  ov ) (5.1) 

a minimum of which for A gives the (Gibbs) free energy AG(q, t; r =  oo). 
Hereafter, we assume 2,  < 2o < 2 and z > 1 for simplicity. Figure 9 shows 
the form of O(A) for t = t*(Aa), t*(Aa) < A < t*(Ab), and t = t*(Ab). In the 
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Fig. 9. 

V(A,t) 

-1 

< t < t*(A~) 

t = t ' (Ab)  

i 
A 

L a n d a u  free energy ~ ( A , q = l , t ; r = o v )  for t = t * ( A a ) ,  t * ( A a ) > t > t * ( A b )  , and  

t = t*(Ab),  P a r a m e t e r  values are  z = 2 and  2 o = 1.7. 

thermodynamic limit n ~ o% a unique state of A is realized at each t except 
for t =  t*(A,) and t =  t*(Ab). At t =  t*(Aa) and t =  t*(Ab), it occurs that 
infinitely many states of A coexist. Is each of the coexisting states realized 
with the same probability? (4'25) The probability of the states with 
A ~ EA, e] + dA] at every t is written as 

dA 1~oo(-~; n, q, t ) -  dT1 Woo(71; n, q)exp(-ntTl) ~ ( q ,  t=O; n)/~oo(q, t; n) 

(5.2) 

In order to answer the above question, more delicate analyses of the parti- 
tion function (3.8) are required. That  is, we must use second-order 
approximations of the Stirling formula and steepest decent methods for 
integration. 

At t = t*(Aa), the minimum point of FD(~, 1/; A, q) is independent of A 
for A < Aa (see Appendix C). Since F(~, ~/; A, q) is a linear function of A 
whose coefficient is independent of ~ and q, all of the coexisting states have 
the same probability. For  the coexistence at t = t*(Ab), direct calculations 
of (5.2) are given in Appendix D. Here I give an intuitive discussion. Let us 
use (4.11) for an evaluation of the probability lg'. Then, we must determine 
an asymptotic form of the j dependence of Po. The normalization condition 
of the probability (4.10) leads to 

Po ~ [2n(n - j )  Is~(Ao~ ; q)l ]1/2 (5.3) 
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where A~ is the Lyapunov exponent and s~ denotes the second derivative 
of s0(A; q) for A. Expanded in Taylor series about the maximum point 

= ~, ,  K(~; A) can be written as 

K(~; A) = Ka4 -F 
(Ao-- A*) 2 

2(1 - ~ , )  
s6,(A,; q)(~ _ ~,)2 + ... (5.4) 

for A* < A  < A  o. Inserting (5.3) and (5.4) into (4.11) and using steepest 
decent methods, we have 

W ~ ( A ; n , q ) d A  Ao_A-----~e nI~M 1 + O  dA for A * < A < A o  

where C is a constant. Since the Landau free energy is constant for 
A * =  Ab < A < Ao = z In 20 at t = t*(Ab), we have 

I ~ ( A ;  n ~ ~ ,  q, t*(Ab)) 

= { ~ A / ( A b - z l n 2 o )  for A b < A < z l n 2  o (5.5) 
for A < A  b or A > z l n 2 o  

Remark that the same minimum value of a Landau free energy does 
not imply that coexisting states have the same probability of realization 
(cf. refs. 4 and 25). 

The thermodynamics of a local Lyapunov exponent has been studied 
on a nonhyperbolic attractor of maps conjugate to an asymmetrical tent 
map. The free energy has been obtained exactly and shows qualitatively dif- 
ferenl~ behaviors, depending on the asymmetry of a map. The free energy 
has been generalized by using weighted measures for an initial value of a 
reference orbit so that a relation between the thermodynamics of a scaling 
index and of a local Lyapunov exponent, especially the occurrence of first- 
order phase transitions, has become clear. The entropy function has been 
directly calculated from the partition function, since the Legendre trans- 
form of the free energy may be different from the entropy function. Sym- 
bolic dynamics can explicitly write a relation between a local Lyapunov 
exponent and reference orbit. Typical reference orbits have been given for 
each value of a local Lyapunov exponent. Linear slopes of the entropy have 
been explained in intuitive discussions. We found that the collision of a 
chaotic attractor with a particular fixed point yields a singular local struc- 
ture in the distribution of a local Lyapunov exponent. It has been shown 
that each of the coexisting states at the phase transition points is realized 
with 1Lhe same probability in the thermodynamic limit. 
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A P P E N D I X  A. CALCULATION OF THE PARTIT ION FUNCTION 

Exchanging the order of summation, we can write the partition 
function (3.8) as 

~N(q, t, n )  = 
m = 2  

(1/~o)(q+t)m (~O/21)q+t 2 [1 /2(aJ) ]  q+t 
O-m ~ t " " " ~rn j = 1 

O-n+l "-'fiN J=  1 

+ (&/&)q+' I~'(~(lO ... 01~m+ 1--. ~))1 '}  

X [q)'(/~(O'n + 1 . . - O 'N) ) I - - t  ( A . 1 )  

Assume that there exist positive constants K / ( i =  1,..., 4) of O(1) such that 

KluZ-l<~o,(u)<K2u ~ 1 for 0 < u < a  (A.2a) 

K3(l_u)Z-l<~p,(u)<K4(l_u)Z 1 for a < u < l  (A.2b) 

We denote the inequality (A.2a) as ~0'(u) oc u z-1. From (2.5) and (2.8b), 
the following inequalities hold: 

u (0 . . . 0  1 1 0 . . . 0 ) = 2 o J < t ~ ( 0 . . . 0 1 a j + l . - . a N ) < 2 o  u 1) 

J 

u(10 ...  0 T 0--.  0) = 1 - (,~0/21) 20 u -  1) (A.3) 

< U ( 1 0 '  "'  010"j+ I " ' "  fiN) < 1 - -  (~0 /21)  /~O j 

Substituting (A.3) into (A.2), we have 

~'(~(0. .-  01aj+ 1""  0-u)) OC 20 (z- I~U- 1~ 
(A.4) 

cp'(~(10 ...01~rj+ 1 " ' 'aN)) OC (2o/21) z ' 20 (~-~)u-b 

Therefore, (A.1) can be written as 

~'N(q,t;n) oc[1-4"(20~q+zt I i (L~(q+zt)(m--1) 
k 2 1 J  rn=2 \ 2 0 ]  [ A ( q - 4 -  t ) ]  n - m  

q 

• ~ 1-1 Io'(~(~.+, "-~N))I- '  
r j = n + l  

[ ~ x ~ l J ( l ~ o ~ q + z t q n ( l ~ ( q + z t ' ( m - ]  . . ,  ~", ~0, ] 1) 
oc 1+ ~-2 [A(q+ t ) ] " - "  

X [(20~q--(z--1)tq~n(L~ -I- \5--/~1 [ '20// [A(q)]U ~-' 
i=2  ( A . 5 )  

The summations in (A.5) lead to (3.9). 
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A P P E N D I X  B. A N A L Y S I S  OF G(q, t ; r > l )  

We study a solution of Eq. (3.15) 

(z--  1)t In 2o+1n[1 + (2o/21) q+t] = 0  

At first, consider the case z > 1, 

Q(t) =- - t +  [ l n ( 2 o -  1)] -1 In r2o (z 1)t_ it (B.1) 

A solution of (3.15) satisfies q = Q(t). Now, Q(t) is a continuous function 
for t < 0, monotone decreasing from + oo to - oo if 2o > 21, and monotone 
increasing from - oo to + oo if 21 > 2o > 2 , ,  where 2 ,  is a maximum real 
solution of the equation 

2 , - 1 ( 2 , - 1 ) = 1  ( 2 , > 1 )  (B.2) 

Therefore, we have 

t ,  = Q l(q) < 0 for 2 o > 2 ,  (B.3) 

For t < t , ,  we have 

(z - 1)t in 20 + ln[1 + (2o/21) q+'] < 0 (B.4) 

When 2 , > 2 o >  1, Q(t) tends to positive infinity as t ~ - 0  and 
t ~ - o o .  The concave function Q(t) for t < 0 has the minimum qc at t = t,, 

tc-~ [ ( z -  1) In 2o] -1 In IB[ < 0  (B.5a) 

1 F(z- 1)In 2o, (z~l)ln_2__ o ] 
qc==_(z_l)ln2o[~-n-O~o---1- ) m l n ( 2 o - 1 )  - B l n I B I  (B.5b) 

where B - [ l n ( 2 o - 1 ) ]  l ln [2~)-1(2o-1)1. If q<qc, (3.15) has no real 
solution and there is no region of the phase C. If q > qo, (3.15) has two real 
solutions, denoted by t m and t M (tm < to < tM < 0). For q > 0, tM coincides 
with t ,  = Q - l ( q )  at 20 = 2 ,  in the limit 2 o ~ 2 , -  0. Indeed, we have 

t in=t,  (q+t*)2*(2*-- l )  q - l + ( z - 1 ) t *  
2 , [1  _ (2,  _ 1)q] ln(2 ,  _ 1) ( 2 * - - 2 0 ) + 0 ( ( 2 *  -20)2 )  

q 2 , ( 2 ,  -- 1 ) ln (2 ,  -- 1) 1 
t , . -  r 0(1)  

z 2 , +  1 - - z  2 , - - 2 0  

for 0 < 2 , - - 2 o 4  1 if q>qc, where 

t* = Q-1(q; 20= 2 , )= - [ l n ( 2 , -  i ) ] - '  in [ 1 -  ( 2 , -  1)q[ 
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qc 

0 
1.1 

z = 2  

1.'5 ~o('q) 
i 

A0 

Fig. 10. Plot of qc = qc(2o), given by (B.5b). The heavy line is for z = 2 and the dashed line 
for z = 4. When 2 ,  > 2o > 1, the free energy G(q, t; r = 1) for q > qc has two phase transitions 
from B to C and from C to B as t decreases. 

Figure 10 gives qr in (B.5b). For small q >0,  there is a value of 2o which 
satisfies qc(2o) = q for 1 < 2o < 2 , ,  denoted by 2c(q). For q <~ O, 2~(q) is 
defined as 2c(q) = 2 , .  If 1 < 2o < 2c(q), then we have 

( z -  1)t In 2o + ln[1 + (2o/21)q+tl > 0  

for every t. If 2c(q)< 20 < 2 , ,  the phase C is realized for t m < t < tM. At 
z = 2  and q =  1, we have 2 ,  = �89 1.61803.., 2c= 1.57745..., and 
t * = - 2 .  Let us consider the case 0 < z <  1. The solution of (3.15) is 
positive. Q ( t )  is given for t > 0 by (B.1). Using the same arguments, we get 
that the phase C is realized for t >  t ,  > 0  if 1 < 2 o < 2 , ,  and for 0 < t m < 

t < t M  if 2 , < 2 0 < 2 c ( q ) ,  while there is no region of the phase C if 
20 > 2c(q). [-Note that 2c(q) = 2,  for q/> 0.] 

A P P E N D I X  C. C A L C U L A T I O N  OF s(A;  q, r =  ~ )  

F(~, r/; A, q) is defined on the region 

Do- {(4, ,I)1o ~ ~ ~ 1 - 7  and 0 ~< r/~< 1} 

by (4.6), where we put x I n  x = 0 a t  x = O. W e  write 

D1---- {(4, r/)l (z-- 1)r/In 2o+ln  2o-- ~ 1n(2o/21) -- A ~>0} 
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The region of integration in (4.5) is D =- D(A;  q, r = oo) = D O c~ D1. Let 
FD(~, t/;A, q) denote the restriction of F(~, q; A, q) to D. We study a 
minimum point and minimum value of FD(~, t/; A, q) for z > 1. 

P r o p o s i t i o n  C.1. F(~, t/;A, q) is a function of class C a on the 
interior of D, convex and monotone increasing for r/, and convex for ~. 

Proposition C.2. The surface ~ = F(4, t/; A, q) in the 4t/'c plane is a 
ruled surface. 

(~o, r/o) is an inner point of Do. The surface ~ = F(~, q; A, q) has the 
principal curvatures 0 in the direction ( - ~ o ,  1 - q o )  and [ ( 1 - q o ) 2 +  4oz]/ 
~o(1- - t /o ) (1 - r /o -~o)  in the direction (40, 1-~/o) at (4o, t/o). Proposi- 
tion C.1 yields that F((, q; A, q) is a minimum at a point on the line t /= 0. 

L e m m a  C.3. At (~, t/) = (4, ,  0), F(~, r/; A, q) takes the minimum 
value 

F ( 4 , , O ; A , q ) = ( A - z l n 2 o ) ( q - O ) - l n [ l + ( ) . o / 2 1 )  ~ (C.1) 

where 0 and ~,  are given by 

0 = q + [(z - 1) In 20] -1 In[1 + ()~o/)[1) q] (C.2a) 

4,  = 1/[1 + (21/2o)~ (C.2b) 

C o r o l l a r y  C.4. For A ~ A a - In 20 - ~, ln(2o/2~), FD(~, t/; A, q) 
takes the minimum value (C.1) at (~, q ) =  (~, ,  0). 

If A > A a ,  then (4, ,  0 ) r  From Proposition C.1, it follows that a 
minimum point of Fo lies on the lines 

OD 0 -- {(~, r/) I r/= 0 and (4, ~/) ~ D} (C.3a) 

and 

~D1 = {(4, r/) [ (z - 1 )r/In 20 + In 20 - ~ ln(2o/2t) - A = 0 and (~, q) E D} 
(C.3b) 

We investigate the behavior of F(4, t/; A, q) on a line ff=const.  Assume 
2o~2~.  Then, we define 

=~?F+ ( z -  1)In 2o ~F 
H(4, q; A, q) - 0q ln()~o/2~) d~ (C.4) 

Since F(~, q; A, q) is concave on ~?D~, the following holds: 

Proposition C.5. H(r r/;A, q) monotonically increases on ~3D~ 
w.r.t, r/. 
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A m and A M a r e  the minimum and maximum values of {ln 20, ln21}, 
respectively. Putting 

4o = ~o(A) = (ln 2o - A)/ln(2o/21) 

we have (40, 0) ~ 8Do c~ 8D1 for A m < A < AM. Let t ,  denote the maximum 
real solution of (3.15), i.e., t . = Q - l ( q )  for 2o>~2. and t . = t u  for 
2.  > 2o > 2c(q). We define 

Ab=--ln21+2r for 2o > 2c(q) (C.5a) 

Ac-=ln21+~(z-1)tmln(2o/21),,o for 2 . > 2 o > 2 ~ ( q )  (C.5b) 

P r o p o s i t i o n  {3.6. For q > 0 and 2,  > 2o > 2c(q), 

A ~ < A b  < z l n 2 o < A ,  (C.6a) 

(z - 1) In 2o 
4o(ab) < -(-~(n(~/~i < 4o(Ac) (C.6b) 

Inserting (C.2) into the definition of Aa and using (3.15) in (C.5a), we 
have 

A b - A ~ =  {[1 + (itO/~l) q+`* ] - 1  [-1 + (ito/it 1) 0] -1}  ln(2o/21 ) 

Since t .  < 0 < 0 - q, we have A b > A a. From (B.5a), it turns out that 

z In ito = In ),1 + 2r - 1),~ ln(2o/21) 

Therefore, we get (C.6a). Using 

4 0 ( A b )  = 1 __ i t(z-  1) t. < 1 - 2~oZ- ~)t~ < 4o(A~) = 1 -it~o z 1)tin 

we get (C.6b). ] 

P r o 0 o s i t i o n  C.7. For 20> 2 , ,  H(4, q; A, q) vanishes on the line 
= 1 - ~/4o(Ab). For it, > ito > itc, H(4, r/; A, q) vanishes on the lines 
= 1 - ~/~o(Ab) and q = 1 - ~/~o(A,). 

Actually, we have 

H ( 4 , ~ = l -  4 A , q )  
~o(A); 

= - l n [ 1 - ~ o ( A ) ]  + ( z -  1) lnito In 
ln(ito/21 ) 

2 . ( z - 1 ) l n 2 o  
o.  i To/Zi 

x ln(2o(Z- ')'* - 1) - q ( z -  1) In 20 

4o(A) 

- 4 o ( A )  
q ( z - 1 ) l n  2 o 

at A = A b  (C.7) 
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Using (3.15), we get H(~, ~/= 1 - ~/~o(Ab); Ab, q) = 0. Since t = t~ is a 
solution of (3.15) for 2 , > 2 o > 2 ~ ,  the same argument leads to 
H(~,, q = 1 - ~/~o(Ac); Ac, q) = 0. I 

L e m m a  C.8. F o r A a < A < A b ,  i f 2 o > 2 , , A a < A < , A b O r A c < A < ~  
ln)~l if 2 , / > 2 o > 2  c, and Aa<A~<ln21 if 2 c > 2 o >  1, Fv(~ , t l ;A ,q)  takes 
the minimum value --sh(A; q) at (~, 7) = (~o, 0), where sh(A; q) is given by 
(4.8). 

For  20 > 2 ,  and Aa < A < AM, H(~o, 0; A, q) monotonically decreases 
w.r.t, d [see (C.7)] and vanishes at A = A  b. It turns out from Proposi- 
t ionC.5 that for Aa<A<~Ab (<AM), FD(~,,~I;A,q) is a minimum at 
(~, ~/) = (~o, 0). If 2 ,  > 20 > 1, H(~o, 0; A, q) monotonically decreases on 
the interval (A~, z ln2o) and monotonically increases on the interval 
(z In )vo, In )ol). The minimum value at A = z In 2o can be written as 

H(~o, 0; A = z In 20, q) = (q~ - q)(z - 1 ) In 2o 

where qc is given by (B.5b). It is trivial that H(~o, 0; A = z In 20, q) > 0 if 
q~<0~ When q > 0  and 2 ~ > 2 o > 1 ,  H ( ~ o , 0 ; A = z I n 2 0 ,  q ) > 0  because 
q > q~. Therefore, it turns out from Proposition C.5 that for 2~> 20> 1, 
FD(~,~I;A,q) is a minimum at (~ , t / )=( r  When q > 0  and 
2 ,  >~ 20 > 2 c, H(~o, 0; A = z In ;to, q) < 0. Proposition C.8 gives H(~o, 0; 
A = A b ,  q ) = H ( ~ o , 0 ; A = A c ,  q ) = 0 .  From (C.6a), it follows that 
H(~o, 0;A,q)~>0 for A ~ < A ~ A b  or A ~ < A < I n 2 1 .  A straightforward 
calculation of F(~o, 0; A, q) gives the minimum value --sh(A; q). | 

Lemma C.9. Assume that q > 0  and 2 , > 2  o>2c .  Then, 
FD(~, 7; A, q) is a minimum at the intersection (~b, qb) of the lines 0DI and 
t l = 1 - -  ~ / ~ o ( A b )  if Ab < A < z In 20, and at the intersection (~c, t/c) of the 
lines 0D1 and t /= 1 - ~/~o(Ac) if z In 2o < A < Ac. The minimum values are 

F(~b, qb; A, q) = --(A - z in 2o) t ,  + q In 2 o + In A(q) 

for Ab < A < z In 20 (C.Sa) 

F ( ~ ,  t/:; A, q) = - ( A  - z In 2o) tm+ q In 2o + In A(q) 

for z l n 2 o < A < A ~  (C.Sb) 

From Proposition C.6, it follows that t?D 1 intersects the line q = 
1 - ~/~o(Ab) if Ab < A < z In 20, and the line t /= 1 - ~/~o(A~) if z In 20 < 
A < A  c. Since H(~, q; A, q) vanishes at these intersections (from Proposi- 
tion C.7), it turns out from Propositions C.5 and C.1 that the intersections 
are minimum points of FD. Inserting q = 1 - ~ / ~ o ( A b )  into (4.6) yields 

822/66/3-4-5 



752 Shigematsu 

F @ , t t =  1 

Using 

~o(Ab) , A, q 

= ~ [ ( z -  1) t ,  In 2 o -  q In ~.o-ln A(q)] ~o--~Tjb) + ( z -  I ) In  2oJ 

+ [ q l n 2 o + l n A ( q ) ]  2-t z - 1  ( z - 1 ) l n 2  

~b[(Z -- 1) In )~o/~o(Ab) + ln(Avo/)~l) ] = z In 2o -- A 

in the above at (~, t l )= (~b, rib), we obtain (C.8a). The same argument 
leads to (C.8b). ] 

Since a maximum value approximation of the integral (4.5) is valid for 
large n, s(A; q, r= oo) is equal to a maximum value of -Fo(~ ,  tl;A, q). 
Inserting Aa into (4.8) and (4.9), we have 

t*(A~; q) = 0 -  q (C.9a) 

sh(A~ ; q) = In[ 1 + (2o/21) ~ -- 0 In 20 + (0 -- q) A , -  In A(q) 

= ln[ l  + (2o/21) ~ + (Aa - z In 20)(0 - q) (C.9b) 

Inserting A b into (4.8) and (4.9) and using (3.15), we have 

t*(Ab; q) = t ,  (C.10a) 

sh(Ab; q)= -- (Z-- i) t ,  In 20-- (q+ t , ) [1  --2(o ~- 1~'* ] 

x ln(2o/21) -- In A(q) - qAb 

= t , (A  b -- z In )~o) -- q In 2o -- In A(q) (C.10b) 

The same calculations for t*(Ac; q) and Sh(Ac; q) yield 

t*(Ac; q) = t m (C.1 la) 

s h ( A c ; q ) = t m ( A c - z l n 2 o ) - q l n 2 o - l n A ( q )  (C.11b) 

Using Corollary C.4, Lemmas C.8 and C.9, and Eqs. (C.9)-(C.11), we get 
(4.7). 

APPENDIX  D. CALCULATION OF THE PROBABILITY (5.2)  

The partition function (3.8) can be written from (4.3) as 

~ u ( q , t ; n ) = ~ N ( q , t = O ; n )  f dA WN(A;n,q)  e -ntA (D.1) 
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Inserting (A.5) into (D.1), using second-order approximations of the 
Stifling formula, and replacing the summations with integrations, we get 

W~(A;n, q) e-ntA~ns/2 ffDd~ drl I(1 l _ t  l__~_~)~j~/2 

x e x p [ -  nF(~, ~; A, q)-ntA] (D.2) 

We introduce new variables (u, v) by 

- 1 = - ( ~  - u ) / ~ o ( A b )  

A = (z - 1)(~/- v) In 2o + l n  2o - r ln()~o/,~ 0 
(D.3) 

and write 

F*,(u, v; A, q) = F(~, q; A, q) (D.4) 

As we assume 2 ,  < 20 < 2 and z > l, F*(u, v; A, q) for A b < A < z In 20 is a 
minimum at (u, v )=  (0, 0)~ 

gF* 
3F___~D* (u = 0, v; A, q) = 0, (u = 0, v; A, q) = C, > 0 (D.Sa) 
~u ~v 

6~2F* (U =:0, V; A, q) - 
r 2 ~ [ 1  - ~o(Ab)]  

.> 0 (D.5b) 

where Cl is a positive constant, not dependent on A and v, and 
~ = ~(u = 0, v) is a linear function of A and v. Performing the integration 
of u by steepest decent methods, we have 

W,(A; n, q) e -"'A = Czn exp{n[Sh(Ab; q) -- Abt*(Ab; q)] } 

xexp{-nA[t- t*(Ab;q)]}  {l +O(-~n)}  (D.6) 

for Ab < A  < z l n  2o. Here C2 is a positive constant independent of A, t, 
and n. At t =  t*(Ab; q), it follows that 

ffv~o~(A; n, q, t) dA = { ~ A/(z ln 2~ for A b < A < z l n 2  o 

for Ab>A or A > z l n 2 o  

(D.7) 

in the thermodynamic limit n ~ oc. 
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